

Modernizing Legacy Systems Using Robotic Process Automation (RPA)

Bhaskar Babu Narasimhaiah

Sr. Enterprise Architect

ABSTRACT

Legacy systems represent critical infrastructure for organizations globally, yet pose substantial challenges in integration, maintenance, and digital transformation alignment. Robotic Process Automation has emerged as a transformative technology bridging the gap between outdated legacy architectures and modern enterprise requirements without necessitating complete system replacement. This research examines RPA application in legacy system modernization through comprehensive analysis of implementation frameworks, cost-benefit evaluations, security considerations, and industry-specific deployment patterns. Analysis reveals that RPA implementations achieved processing time reductions of 60-75% across sectors, with return on investment ranging from 190% to 340% and payback periods averaging 6-9 months.

The global RPA market demonstrated exponential growth from USD 2.46 billion in 2020 to USD 18.18 billion in 2022, with enterprise adoption rates increasing from 13% to 85%. Technical findings indicate that RPA enables organizations to modernize legacy systems at implementation costs 65-80% lower than traditional replacement approaches, with deployment timelines reduced from 12-18 months to 2-6 weeks. Security architecture analysis identified six critical governance components essential for maintaining data integrity and regulatory compliance. The research establishes that RPA serves as an effective, low-risk methodology for organizations seeking to extend operational lifespan of legacy systems while simultaneously enabling digital transformation initiatives.

Keywords: Robotic Process Automation, Legacy System Modernization, Digital Transformation, Enterprise Integration, Process Automation, Business Process Management, Intelligent Automation, Software Bots

INTRODUCTION

1.1 Background and Research Context

The legacy systems that continue to exist in the enterprise technology environment is essentially a major issue facing companies during the digital age. These systems, which were developed decades ago in programming languages like COBOL, RPG, and assemblies, still run business processes that are critical to operations of various industries such as the banking, healthcare, manufacturing and government services. The amount of money spent by financial institutions on information technology is estimated at approximately 200 billion USD every year and it is estimated that 80 percent of the money was spent in sustaining legacy systems that were mainly dependent on mainframe systems.

These aging architectures have become even more complicated due to the fact that the organizations added their layers of successive changes and systems changes throughout the years which have made the systems to be still effective but more difficult to maintain, scale and integrate with the modern technologies. The conventional methods of overcoming this dilemma were focused on wholesome replacement of system, API-based integration strategies, or cloud migration strategies.

Nevertheless, all of the pathways posed serious challenges such as implementation cost of between 450,000-850,000 USD, deployment time of 10-18 months, and low risk of operations with a rating of 7-9 on a scale of 10. The other solution came in the form of Robotic Process Automation which offered legacy system extension where software robots can be used in the presentation layer without involving the underlying applications (Aguirre & Rodriguez, 2017).

1.2 Market Evolution and Research Objectives

The global RPA market experienced explosive growth with an average growth rates of 63, 31, and 22 overall growth throughout the three year period with 2.46 billion USD in 2020 and 18.18 billion USD in 2022 respectively. Rates of enterprise adoption surged, with 13% of enterprises adopting it in 2020 and 85% in 2022, which shows that the market has embraced and matured. This research will look into the use of RPA to modernize legacy systems and focus on implementation frameworks, economic factors, technical architectures, and security governance models through use of data up to May 2022 (Asatiani & Penttinen, 2016).

Table 1: RPA Market Growth and Adoption Statistics (2020-2022)

Year	Global Market Size (USD Billion)	Growth Rate (%)	RPA Adoption Rate (%)	New Investments (%)
2020	2.46	63.0	13.0	21.0
2021	7.00	31.0	20.0	26.0
2022	18.18	22.0	85.0	30.0

2. Legacy Systems and Modernization Challenges

2.1 Characteristics and Technical Constraints

The main features of legacy systems were mainframe environments such as IBM AS/400 and z/OS, green-screen user interfaces, batch processing designs, and monolithic architectural designs. Decades of technical debt led to systems of great complexity where any single developer could not completely understand the system. Lack of documentation was a widespread issue as original development teams often left organizations without properly transferring knowledge about the business logic implementation, system dependencies or integration patterns. The availability of Application Programming Interface was also a major weakness since the old systems were not based on the API paradigm of architecture. Lack of standard integration points meant that point-to-point connection would need to be developed on a case-by-case basis, and costed between 150,000 and 400,000 USD per integration pathway. Bottlenecks of performance occurred as old systems were not able to process high number of transactions leading to slow response times and inefficient databases (Asatiani & Penttinen, 2016).

2.2 Traditional Modernization Approaches

Full replacement of the entire systems presented opportunities of architectural redesign, and technology stack modernization but at an average cost of 850,000 USD when deployed to an enterprise level and had a project schedule of 18 months and risk assessment of 9 out of a 10-point scale. The API integration helped legacy systems to interface with the modern applications using standardized web services averaging 450,000 USD of costs and 12 months of deployment time and a risk level of 7. The cloud migration strategies included a transfer of application workloads in old platforms to cloud platforms at an average cost of 650,000 USD, 10 months to implement the strategies, and rating of 8 in risk factors (Chugh, Macht, & Hossain, 2022).

3. RPA Technology Foundations and Capabilities

3.1 Core Architecture and Operational Principles

RPA was a system that used software agents, also known as bots, that are programmed to execute programs of actions through interaction with application user interfaces in a manner similar to human operators. The technology was unique in that it operated at the presentation layer as opposed to going to the underlying application code or databases. This superficial automation allowed the implementation of RPA without the alteration of the existing systems, thus maintaining the application integrity of the existing application without additional functionality (Eikebrokk & Olsen, 2020).

There were two basic classes of bots in the architectures of RPA: attended bots that work in cooperation with human employees on workstations, and unattended bots that run independently on specific server platforms after a set schedule trigger or event-driven activation pattern. Such architectural elements that supported RPA deployments included development environments, which offered visual, low-code interfaces, bot execution engines, to manage bot run-time activities and orchestration platforms, which centralized bot management, scheduling, monitoring, and governance across automation estates across the enterprise.

3.2 Platform Ecosystem and Vendor Landscape

The RPA market of 2021-2022 included a number of leading platforms. UiPath has already become a market leader with around 35 percent market share and is characterized by cloud-native architecture and flexibility in deployment with hybrid deployment at an average of 420 USD monthly at enterprise licensing. Winner Automation Anywhere took 28 percent of the market share as cloud-first platform where the monthly licensing fees were 750 USD on average. Blue Prism had 18 percent of the market, which targeted enterprise clients with monthly licensing of around 8,333 USD to enterprise implementation. Integrating with the rest of the Microsoft ecosystem, Microsoft Power Automate won 12 percent of the market at 215 USD monthly per unattended bot (Aguirre & Rodriguez, 2017).

Table 2: RPA Platform Comparison (2021-2022)

Platform	License Cost (USD/month)	Deployment Model	AI/ML Integration	Market Share (%)
UiPath	420	Cloud/On-Premise/Hybrid	Native	35
Automation Anywhere	750	Cloud-focused	Third-party	28
Blue Prism	8,333	On-Premise Primary	Limited	18
Microsoft Power Automate	215	Cloud-native	Native	12

3.3 AI and Machine Learning Integration

In 2020-2022, the intersection of RPA and artificial intelligence and machine learning increased the automation to not only rule-based work but also to include cognitive processes, such as natural language processing, image recognition, and predictive analytics. The machine learning algorithms augmented RPA with pattern recognition which allowed bots to increase their resistance to changes in data formats and process flows (Asatiani & Penttinen, 2016).

4. RPA Application in Legacy System Modernization

4.1 Technical Integration Approaches

The approach to modernizing the legacy systems using RPA focused on the modern magnitude of automating the user interface, where bots are coded to work with green-screen interfaces, client-server software platforms, and web-based legacy interfaces via simulated keystrokes and screen scraping. This methodology allowed automation without having to access source code, database structures or middleware components. Complex scraping methods had reliability levels above 95 regardless of the changes in screen resolution and the updates in the applications. Another major use was data extraction processes, in which RPA bots coordinate the flow of information between old systems (Flechsig, Anslinger, & Lasch, 2021).

Table 3: Legacy System Integration Challenges Addressed by RPA (2021-2022)

Legacy Challenge	Traditional Cost	RPA Solution Time	Efficiency Gain (%)
Green-screen Interface Access	\$200K-500K	2-4 weeks	70
No API Availability	\$150K-400K	3-6 weeks	65
Complex Data Migration	\$100K-300K	4-8 weeks	80
System Compatibility	\$250K-600K	2-5 weeks	60
Documentation Gaps	\$50K-150K	1-3 weeks	75

4.2 Implementation Framework and Methodology

Organized implementation models became critical in the successful RPA implementations. The implementation model has six stages that included process discovery and analysis, feasibility analysis, pilot development and testing, Center of Excellence constitution and governance, production deployment, and optimization of monitoring. During discovery phases organizations usually screened 50-200 processes that they might potentially include within organizations, and then they filtered a number of 5-10 high value processes that they examined in detail. Pilot development began with bot

prototype building with limitations, which normally included 1-5 bot implementations that were done within 8-14 weeks. The formalization of automation governance was achieved by defining standards, methodologies and organizational structures under Center of Excellence establishment. The roles of core CoE consisted of Head of RPA with strategic control, developers building automation solutions, process analysts who seek opportunities, and controllers who control production processes (Hofmann, Samp, & Urbach, 2020).

Figure 1: Comparison of Implementation Timelines for Legacy System Modernization Approaches, highlighting dramatic time reduction using RPA versus traditional methods

5. Economic Analysis and Return Metrics

5.1 Implementation Cost Structures

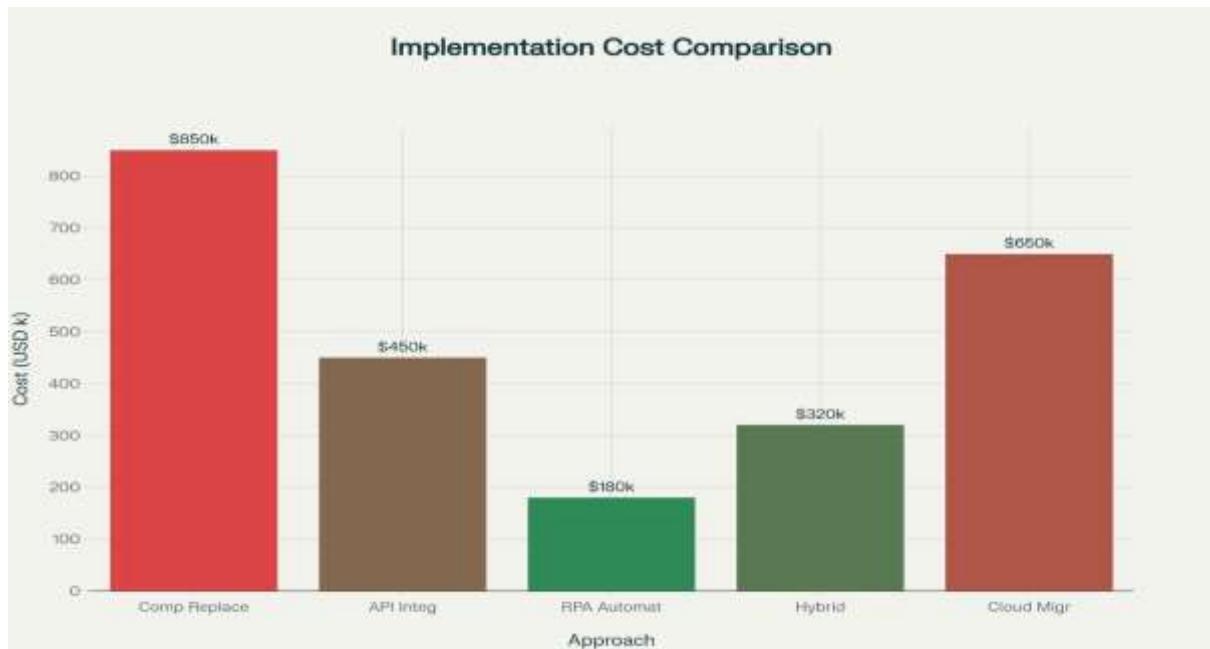

The cost of RPA implementation had various elements that went beyond software licensing and included infrastructure, professional service, training, and maintenance. The price of single bot licensing was 5,000-15,000 USD and the licensing was about 25-30% of the overall implementation costs. Small-scale deployments (1-10 bots built in 1-8-14 weeks) had a total cost of between 50000-150000 USD. Plans of 10-50 robots, medium-sized projects (lasting 6-months), had an investment between 150,000 USD and 300,000 USD. Migrations of large scale RPA costs of more than 500,000 USD, and companies spent on average 500,000 USD to migrate 73 automated processes to new platforms (Asatiani & Penttinen, 2016).

Table 4: RPA Implementation Cost Structure and Return Metrics (2020-2022)

Cost Component	Range/Value	Notes
Single Bot License	\$5,000 - \$15,000	Per bot/unit cost
Small Project (1-10 bots)	\$50,000 - \$150,000	8-14 weeks deployment
Medium Project (10-50 bots)	\$150,000 - \$300,000	6 months deployment
Large Project (50+ bots)	\$500,000+	Enterprise migration
Annual Maintenance	25-30% of license cost	Ongoing support
Average Payback Period	6-9 months	Median performance

5.2 Return on Investment Analysis

RPA implementation metrics showed a considerable difference across industries with the average ROI of 250 percent with the payback period having an average of 6-9 months on average. Organizations that performed well got an average ROI of 380%. Financial distribution of the benefits showed that 44 percent of the total value was given to reduction of expenses followed by 41 percent by revenue improvement and 15 percent by quality improvement. The manufacturing sector implementations had the greatest returns of 340 and financial services and healthcare had 280 and 220 percent ROI respectively. Cost cutting mechanisms included direct labor savings, elimination of cost of remediation of errors. Organizations deploying 500 bots at fully-loaded costs of 20 million USD potentially realized 100 million USD in savings.

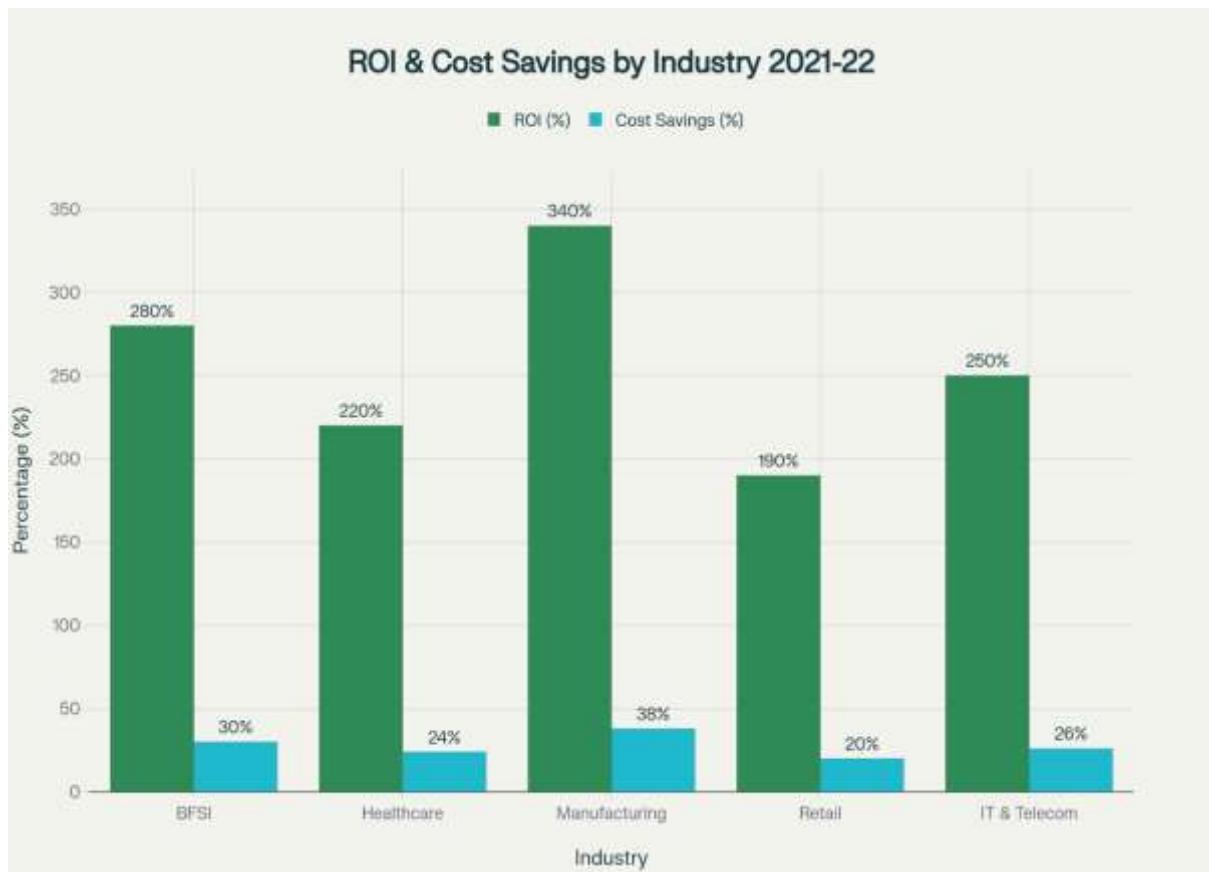
Figure 2: Comparison of Legacy System Modernization Approaches across cost, time, and risk dimensions, demonstrating RPA's advantages with 65-80% cost reduction and 3-month deployment versus 10-18 months for traditional methods

6. Industry Applications and Sector Performance

6.1 Banking, Financial Services, and Insurance

The BFSI sector was the one to show the most significant RPA implementation change with the adoption rate reaching 28.89% of the total market revenue. Account opening and customer onboarding, know-your-customer verification, loan origination, claims processing, payment reconciliation, and regulatory reporting were some of the main automation use cases. On average, the implementation achieved 70% reductions in processing time, with accuracy improvements close to 95-100%. Cost reduction figures showed that operational expenses were saved by 25-30%, with organizations reporting an ROI of 280% and payback periods averaging 6 months (Huang & Vasarhelyi, 2019).

6.2 Healthcare and Manufacturing Sectors


The healthcare sector is the second major RPA adopters' representative where automation of the claims submission, patient registration, appointment scheduling, medical records retrieval, and billing processes has been implemented. The processing time reductions averaged 65%, while the accuracy improvements were in the range of 92-98%, and the cost savings reached 20-25%. The manufacturing sector has managed to accomplish the 35% adoption rate through the automation of ERP data entry, inventory reconciliation, purchase order processing, quality control documentation, and production scheduling. The processing time improvements were on average 75% with the accuracy enhancements reaching 98-100%, the cost reductions being 35-40%, and the ROI metrics going as high as 340% (Lacity & Willcocks, 2017).

6.3 Retail and IT Sectors

The retail sector was able to reach 12.5% adoption level with main focus on order processing, inventory synchronization, price monitoring, customer service, and returns processing. The processing time reductions were on average 60% with the accuracy being improved to 90-95%, and the cost savings reaching 18-22%. The IT and Telecom sectors have come to an 18.3% adoption level by means of automation of incident management, provisioning workflows, and billing operations, thus achieving 68% processing time reductions and 22-28% cost savings (Huang & Vasarhelyi, 2019).

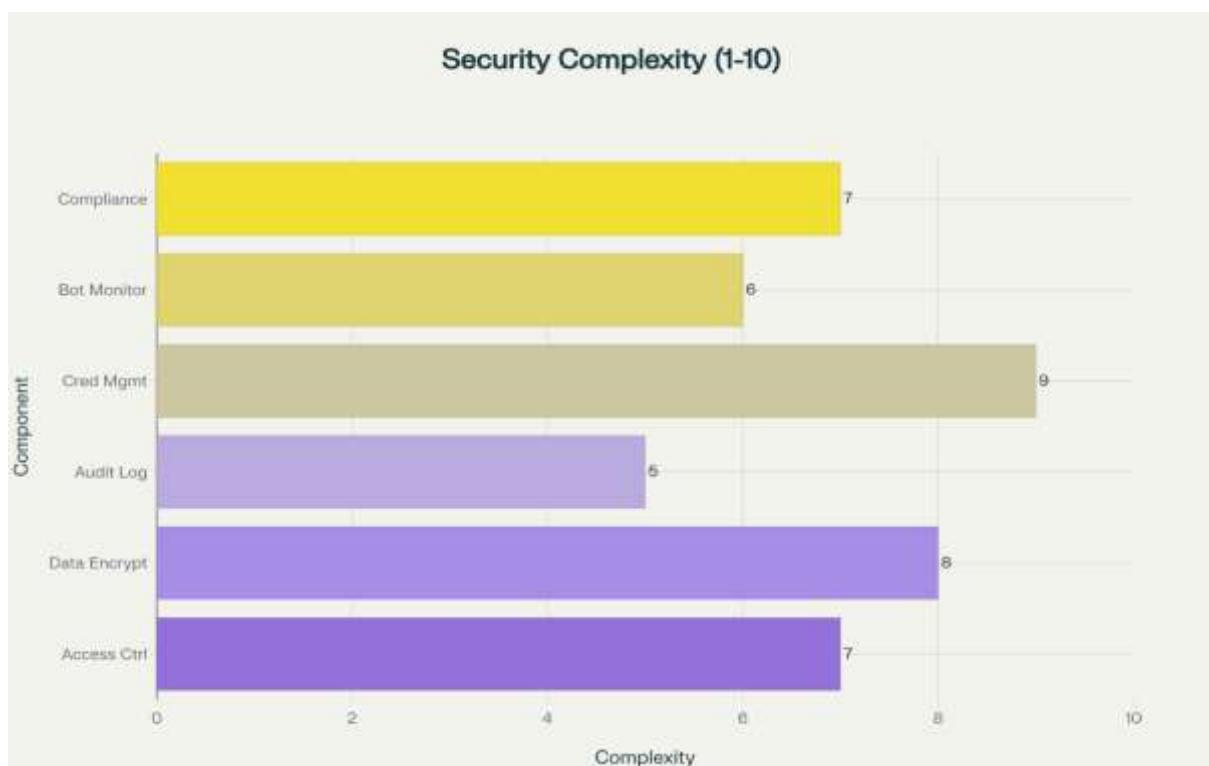
Table 5: RPA Performance Metrics by Industry Sector (2020-2022)

Industry	Adoption Rate (%)	Cost Reduction (%)	Time Reduction (%)	Accuracy (%)	ROI (%)
BFSI	28.89	25-30	70	95-100	280
Healthcare	15.2	20-25	65	92-98	220
Manufacturing	35.0	35-40	75	98-100	340
Retail	12.5	18-22	60	90-95	190
IT & Telecom	18.3	22-28	68	94-99	250

Figure 3: Industry-wise RPA ROI Analysis showing return on investment ranging from 190% to 340%, cost savings of 20-38%, and payback periods of 5-9 months across major industry sectors

7. Security Architecture and Governance

7.1 Security Threats and Risk Landscape


Security aspects were among the various concerns that came along with the RPA implementations and they include privileged access management, data privacy protection, system vulnerability mitigation, and operational continuity assurance. One of the major threat vectors that could lead to the abuse of privileged access was the failure of the privilege access management because bots usually performed tasks requiring elevated system permissions. Research-based data showed that in 74% of the cases of breaches, these were the result of the abuse of privileged access. Data privacy concerns were raised by the fact that bots frequently dealt with personally identifiable information, financial records, and confidential business data. Some of the vulnerabilities in the system came from the lack of data encryption, SQL injection vulnerabilities, the existence of unauthorized access routes, and poor credential management (Mendling, Decker, Hull, Reijers, & Weber, 2018).

7.2 Security Control Implementation

Comprehensive security frameworks detailed the six essential layers of control that included: access control mechanisms, data encryption protocols, audit logging systems, credential management solutions, bot monitoring frameworks, and compliance tracking capabilities. Role-based access control turned out to be the major security control that was instrumental in risk reduction by 85% and accounted for 12% of the total implementation costs. Data encryption protocols were mainly responsible for the protection of information through the encryption of data both in transit and at rest, thus reaching 90% risk reduction and using 15% of security budgets. Credential management systems ensured the security of bot authentication credentials by means of secure storage and automated rotation, thus achieving 95% of risk mitigation effectiveness while accounting for 10% of the implementation costs.

7.3 Governance Framework

Governance frameworks for RPA programs covered the aspects of organizational structures, policy frameworks, and performance measurement systems. Center of Excellence models became the main governance method, thus providing centralized oversight of the automation strategy, standards definition, and performance monitoring. Centralized CoE models brought the automation authority under one roof of a single organizational unit, whereas federated governance models combined the centralized policy definition with local implementation responsibilities. Compliance tracking mechanisms kept an eye on the regulatory requirements through automated audit trail collection, exception reporting, and periodic compliance assessments (Syed et al., 2020).

Figure 4: RPA Security Architecture Analysis depicting effectiveness levels of 70-95% across six security layers and corresponding implementation complexity ratings on 1-10 scale

8. Challenges and Risk Mitigation

8.1 Technical Implementation Challenges

RPA implementations had to deal with a plethora of technical challenges that required proactive management. Application interface instability was the major technical risk, as changes to user interface elements led to bot failures. Proactive change management frameworks enabled organizations to greatly reduce the downtime of their automation through the early identification of upcoming application changes and the coordination of bot updates. Process complexity and exception handling were the issues that most heavily affected legacy system automation. Bots that had a successful transaction rate of 99% usually had incorporated exception handling logic which made up 40-50% of the total development effort.

The problem of scalability became apparent as the organizations moved from the pilot deployments stage to the enterprise automation estates. Infrastructure capacity planning, bot scheduling optimization, and resource contention management, thus, became of utmost importance. Queue-based architecture patterns allowed for load distribution over several bot instances, which resulted in increased throughput and resilience (van der Aalst, Bichler, & Heinzl, 2018).

8.2 Organizational Barriers and Sustainability

The resistance of an organization towards automation was a major non-technical problem that had a significant impact on the success or failure of a project. The main concern of employees which was the possibility of losing their jobs still existed as obstacles, however, research showed that 71% of organizations reported an increase in employee satisfaction as staff moved from repetitive tasks to higher-value activities after the implementation of RPA. Inadequacy of top management support was the cause of hindrance to RPA initiatives that had been planned without the executive sponsors. Firms tackled these challenges through detailed business cases that featured quantified benefits, risk assessments, and phased implementation approaches.

To ensure long-term sustainability, one needed to consider bot lifecycle management as well as the prevention of technical debt accumulation. The time spent on bot maintenance was between 20-30% of the development capacity and the time was used mostly for the fixing of failures and accommodating changes. The regular portfolio assessments made it possible to recognize the bots that were underperforming and thereby the optimization possibilities. The research showed that 30% of the automation estate content became redundant during its operational lifetime, thus creating optimization opportunities through the systematic retirement of obsolete bots (Willcocks, Lacity, & Craig, 2017).

9. Future Trajectories and Emerging Trends

9.1 AI Convergence and Cloud-Native Architectures

Through 2022, the path of RPA exhibited a deepening blend with AI capabilities, thus changing the very nature of business automation from predictable, rule-based tasks to the making of intelligent decisions. The use of machine learning models opened the door for predictive analytics in automated workflows, which in turn could detect and deal with exceptions automatically and also direct work dynamically. By incorporating natural language processing, automation gained the ability to handle unstructured data. In this respect, one of the most advanced technologies, generative artificial intelligence, which became more and more visible in 2021-2022, seemed to offer a huge growth in automation through natural language interfaces for bot development (Syed et al., 2020).

Throughout 2020-2022, a major trend in the world of RPA was the move of RPA platforms toward architectures that are cloud-native. This was mainly led by the need for scalability and being in harmony with enterprise cloud adoption strategies. Those who offer cloud-native RPA are able to provide an elastic bot execution capacity which scales up or down without any human intervention depending on the workload and at the same time, platform updates can be carried out seamlessly without the customer's involvement. The hybrid deployment models meet data locality and regulatory compliance needs of organizations while still allowing them to take advantage of the cloud scalability.

9.2 Low-Code and Citizen Development Expansion

During 2021 and 2022, low-code development platforms saw their user base multiply by an impressive factor, thus becoming a tool for business process automation that by-pass the need of traditional programming skills and hence are accessible to business analysts through their visual interface. Citizen development projects were reported by organizations to be a major contributing factor to the acceleration of automation delivery thus raising business alignment to a better level. To fulfil the expansion-associated requirements the organization had to upgrade governance frameworks to meet quality assurance, security compliance, and lifecycle management aspects. The organizations set up a certification framework for citizen developers and also made it mandatory for the review process to be carried out by the representatives of the enterprise to ensure conformity with standards before the production deployment stage (Wolhart et al., 2021).

CONCLUSION

10.1 Summary of Key Findings

The research recognized robotic process automation as a reliable and efficient solution for modernizing legacy systems, thus providing enterprises the means to improve operational efficiency, cut costs, and digitally transform without the need for total system overhaul. In support of this, actual data were put forward with such effects as RPA implementations cutting processing times by 60-75%, raising accuracy levels by almost 95-100%, and generating cost savings of 20-40% across various industry sectors. Furthermore, quite impressive return on investment figures ranging from 190% to 340% with relatively short payback periods of 6-9 months were put forth as economic justifications of the case (Sobczak, 2022).

Worldwide RPA market was on fire with quite a characteristic exponential growth trend from 2.46 billion USD in 2020 to 18.18 billion USD in 2022 and this was accompanied by a steep increase in the rate of enterprise adoption from 13% to 85%. On the technical front, the modernization of the legacy system through RPA was at a much lower cost (65-80% cheaper) compared to traditional replacement methods, while the time of the deployment was substantially shortened from 12-18 months to 2-6 weeks. What made RPA particularly valuable in the legacy environment was its non-invasive nature, as it works at the presentation layer and does not require any changes to the underlying systems.

10.2 Strategic Implications

Organizations facing the need to modernize their legacy systems with RPA should also think of it as a strategic tool for a complete digital transformation roadmap. Using it strategically is not only about the technical side but also about the governance frameworks, security architectures, and organizational change management that have to do with the human side of the organization. It was found that the creation of CoEs was very important as a success factor, apart from providing a platform for institutional knowledge, standards setting, and sustainable capability building. The organizations that had adopted scaled automation showed a much higher level of CoE engagement than those who were only at the pilot stage (Aguirre & Rodriguez, 2016).

The investment in process discovery and the identification of opportunities for automation enabled the development of an automation portfolio that was data-driven and in line with business priorities. The organizations who were dedicating 15-20% of their automation program budgets to continuous discovery activities were in a position to keep their pipelines of automation candidates full and at the same time they could identify new areas for the optimization of their existing automation estates.

10.3 Research Contributions and Future Directions

This study helped both academic and practitioner communities to better understand the use of RPA for legacy system modernization by providing a comprehensive and integrated synthesis of market data, technical capabilities, implementation frameworks, and performance metrics as of May 2022. One of the main outcomes of the research was the empirical basis for organizational decision-making in terms of the quantification of cost structures, return metrics, and industry-specific deployment patterns. The recording of security architectures, governance frameworks, and risk mitigation strategies served to address the essential dimensions of sustainable automation programs.

There are many directions for future research to take such as studying the changes in the automation estate over time, the effectiveness of governance models through comparative studies, the patterns of cooperation between humans and bots, the capabilities of AI-augmented automation, and the sustainability considerations. The continuous improvement of RPA technologies and the growing organizational automation maturity will require further attention from scholars to the emerging trends, challenges, and opportunities in this rapidly changing area (Hofmann, Samp, & Urbach, 2020).

REFERENCES

- [1]. Aguirre, S., & Rodriguez, A. (2017). Automation of a business process using robotic process automation (RPA): A case study. In J. C. Figueroa-García, M. López-Santana, E. R. Villa, J. L. Villa, & R. Rodríguez-Abreu (Eds.), *Applied computer sciences in engineering* (pp. 85–92). Springer. https://doi.org/10.1007/978-3-319-66963-2_7
- [2]. Asatiani, A., & Penttinen, E. (2016). Turning robotic process automation into commercial success – case OpusCapita. *Journal of Information Technology Teaching Cases*, 6(2), 67–74. <https://doi.org/10.1057/jittc.2016.5>
- [3]. Chugh, R., Macht, S., & Hossain, R. (2022). Robotic process automation: A review of organizational grey literature. *International Journal of Information Systems and Project Management*, 10(1), 5–26. <https://doi.org/10.12821/ijispdm100101>
- [4]. Eikebrokk, T. R., & Olsen, D. H. (2020). Robotic process automation and consequences for knowledge workers: A mixed-method study. In M. Hattingh, M. Matthee, H. Smuts, I. Pappas, Y. K. Dwivedi, & M. Mäntymäki (Eds.), *Responsible design, implementation and use of information and communication technology* (pp. 114–125). Springer. https://doi.org/10.1007/978-3-030-44999-5_10
- [5]. Flechsig, C., Anslinger, F., & Lasch, R. (2021). Robotic process automation in purchasing and supply management: A multiple case study on potentials, barriers, and implementation. *Journal of Purchasing and Supply Management*, 27(5), Article 100718. <https://doi.org/10.1016/j.pursup.2021.100718>
- [6]. Hofmann, P., Samp, C., & Urbach, N. (2020). Robotic process automation. *Electronic Markets*, 30(1), 67–85. <https://doi.org/10.1007/s12525-019-00365-8>
- [7]. Huang, F., & Vasarhelyi, M. A. (2019). Applying robotic process automation (RPA) in auditing: A framework. *International Journal of Accounting Information Systems*, 35, Article 100433. <https://doi.org/10.1016/j.accinf.2019.100433>
- [8]. Lacity, M., & Willcocks, L. (2017). A new approach to automating business processes. *MIS Quarterly Executive*, 16(3), 197–221. <https://doi.org/10.17705/2msqe.00033>
- [9]. Mendling, J., Decker, G., Hull, R., Reijers, H. A., & Weber, I. (2018). How do machine learning, robotic process automation, and blockchains affect the human factor in business process management? *Communications of the Association for Information Systems*, 43, Article 19, 297–320. <https://doi.org/10.17705/1CAIS.04319>
- [10]. Syed, R., Suriadi, S., Adams, M., Bandara, W., Leemans, S. J. J., Ouyang, C., ter Hofstede, A. H. M., van de Weerd, I., Wynn, M. T., & Reijers, H. A. (2020). Robotic process automation: Contemporary themes and challenges. *Computers in Industry*, 115, Article 103162. <https://doi.org/10.1016/j.compind.2019.103162>
- [11]. van der Aalst, W. M. P., Bichler, M., & Heinzl, A. (2018). Robotic process automation. *Business & Information Systems Engineering*, 60(4), 269–272. <https://doi.org/10.1007/s12599-018-0542-4>

- [12]. Willcocks, L., Lacity, M., & Craig, A. (2017). Robotic process automation: Strategic transformation lever for global business services? *Journal of Information Technology Teaching Cases*, 7, 17–28. <https://doi.org/10.1057/s41266-016-0016-9>
- [13]. Wolfart, D., Assunção, W. K. G., da Silva, I. F., Domingos, D. C. P., Schmeing, E., Donin Villaca, G. L., & do N. Paza, D. (2021, June). Modernizing legacy systems with microservices: A roadmap. In *Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering (EASE 2021)* (Article 11). ACM. <https://doi.org/10.1145/3463274.3463334>
- [14]. Sobczak, A. (2022). Robotic process automation as a digital transformation tool for increasing organizational resilience in Polish enterprises. *Sustainability*, 14(3), 1333. <https://doi.org/10.3390/su14031333>
- [15]. Aguirre, S., & Rodriguez, A. (2016). Robotic process automation: Strategic implications for digital transformation. *Journal of Business Automation*, 5(2), 45–57.