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ABSTRACT 

 

The increasing integration of artificial intelligence (AI) into various domains has underscored the critical need for 

preserving privacy in AI applications. This survey explores the landscape of privacy-preserving techniques in AI, 

focusing on encrypted methods that safeguard sensitive data while enabling robust machine learning models. We 

categorize and examine a range of techniques, including homomorphic encryption, secure multi-party computation, 

differential privacy, and federated learning, highlighting their principles, advantages, and limitations. The survey 

provides a comparative analysis of these methods in terms of computational efficiency, security guarantees, and 

applicability to different AI tasks. We also discuss current challenges and future directions, emphasizing the 

importance of balancing privacy with performance. This comprehensive review aims to guide researchers and 

practitioners in selecting appropriate privacy-preserving techniques for their AI applications, fostering the 

development of secure and trustworthy AI systems. 

 

Keywords: Privacy-Preserving AI, Encrypted Techniques, Homomorphic Encryption, Secure Multi-Party 
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INTRODUCTION 

 

The rapid advancement and widespread adoption of artificial intelligence (AI) have revolutionized various sectors, from 

healthcare and finance to transportation and entertainment. AI's ability to analyze vast amounts of data and generate 

insights has driven its integration into numerous applications, enhancing decision-making processes and operational 

efficiencies. However, this proliferation of AI technologies has also raised significant concerns about data privacy and 

security. 

 

The essence of AI lies in its reliance on data, often including sensitive and personal information. The need to process such 

data without compromising privacy has become paramount, especially in light of increasing data breaches and stringent 

privacy regulations. Traditional data protection methods, while essential, are often insufficient in the context of complex AI 

models and large-scale data processing. 

 

To address these challenges, researchers and practitioners have developed various privacy-preserving techniques. These 

methods aim to ensure that AI systems can perform their tasks effectively while safeguarding the privacy of the data 

involved. Among these, encrypted techniques have emerged as a prominent approach, leveraging cryptographic methods to 

protect data throughout the AI pipeline. 

 

This survey aims to provide a comprehensive overview of the key encrypted techniques used in privacy-preserving AI. We 

will delve into the principles and mechanisms of homomorphic encryption, secure multi-party computation, differential 

privacy, and federated learning. Each technique will be examined in terms of its strengths, limitations, and practical 

applications, offering a comparative analysis to guide the selection of appropriate methods for specific AI tasks. 

 

LITERATURE REVIEW 

 

Homomorphic Encryption 

Homomorphic encryption allows computations to be performed directly on encrypted data without requiring decryption. 

Gentry (2009) introduced the first fully homomorphic encryption (FHE) scheme, which enabled arbitrary computations on 

encrypted data and laid the groundwork for subsequent advancements. Recent studies have focused on improving the 

efficiency and practicality of FHE for real-world applications. For example, Chillotti et al. (2020) proposed the TFHE 
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library, which significantly enhances the performance of homomorphic encryption operations. Despite these advancements, 

the high computational overhead remains a challenge, particularly for large-scale AI applications. 

 

Secure Multi-Party Computation (SMPC) 

Secure multi-party computation (SMPC) enables multiple parties to jointly compute a function over their inputs while 

keeping those inputs private. The foundational work by Yao (1982) introduced the concept of secure two-party 

computation, which has since been extended to multi-party settings. More recent contributions, such as the SPDZ protocol 

(Damgård et al., 2012), have improved the efficiency and scalability of SMPC. Applications of SMPC in AI include 

privacy-preserving machine learning and secure data aggregation. However, challenges remain in balancing the trade-offs 

between security, efficiency, and practicality. 

 

Differential Privacy 

Differential privacy provides a framework for quantifying and limiting the privacy risks associated with data analysis. 

Dwork et al. (2006) formalized the concept, defining differential privacy and introducing mechanisms such as the Laplace 

and exponential mechanisms. Subsequent research has expanded on these foundations, developing methods for applying 

differential privacy to machine learning models. For instance, Abadi et al. (2016) proposed a differentially private 

stochastic gradient descent (DP-SGD) algorithm, which has become a cornerstone in the field. While differential privacy 

offers strong theoretical guarantees, its practical implementation often involves trade-offs between privacy and model 

accuracy. 

 

Federated Learning 

Federated learning is a decentralized approach where multiple parties collaboratively train a model without sharing their 

raw data. McMahan et al. (2017) introduced the concept, demonstrating its potential for privacy-preserving machine 

learning. Since then, numerous studies have explored federated learning's applications and challenges. For example, 

Kairouz et al. (2019) provided a comprehensive overview of federated learning, discussing its advantages and the technical 

hurdles that need to be addressed. Key challenges include ensuring secure communication, handling heterogeneous data, 

and mitigating issues related to model convergence and accuracy. 

 

Comparative Analyses 

Several comparative studies have examined the relative strengths and limitations of these encrypted techniques. For 

instance, Acar et al. (2018) provided a comparative survey of privacy-preserving techniques in machine learning, 

highlighting the trade-offs between different approaches. They emphasized the importance of context-specific 

considerations when selecting a privacy-preserving method, as the suitability of a technique can vary depending on the 

application requirements and constraints. 

 

Current Challenges and Future Directions 

Despite significant progress, several challenges persist in the field of privacy-preserving AI. These include the need for 

improved computational efficiency, better scalability, and more robust security guarantees. Additionally, there is a growing 

interest in combining multiple privacy-preserving techniques to leverage their complementary strengths. Future research 

directions include developing hybrid approaches, enhancing the interpretability of privacy-preserving models, and 

addressing ethical considerations related to privacy and AI. 

 

This literature review underscores the dynamic and evolving nature of privacy-preserving AI. By building on the 

foundational works and addressing current challenges, the field continues to move towards more secure and efficient AI 

systems that uphold data privacy. 

 

THEORETICAL FRAMEWORK 

 

Homomorphic Encryption 

Principle: Homomorphic encryption allows computations to be performed on ciphertexts, producing an encrypted result 

that, when decrypted, matches the result of operations performed on the plaintexts. 

 

Mathematical Foundation: 

 

1. Encryption Function: E(m)E(m)E(m) encrypts a plaintext message mmm. 
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2. Decryption Function: D(E(m))=mD(E(m)) = mD(E(m))=m decrypts the ciphertext to retrieve the original 

message. 

3. Homomorphic Property: For a given operation ⊕\oplus⊕, there exists a corresponding operation ⊗\otimes⊗ 

such that D(E(m1)⊗E(m2))=m1⊕m2D(E(m_1) \otimes E(m_2)) = m_1 \oplus m_2D(E(m1)⊗E(m2))=m1⊕m2. 

 

Example: In Gentry's fully homomorphic encryption scheme, addition and multiplication operations on encrypted data 

correspond to addition and multiplication on plaintext data, enabling complex computations on encrypted datasets. 

 

Secure Multi-Party Computation (SMPC) 

 

Principle: SMPC allows multiple parties to jointly compute a function over their inputs while keeping those inputs private 

from each other. 

 

Mathematical Foundation: 

 

1. Secret Sharing: Input data is divided into shares distributed among the parties. 

2. Computation Protocol: Parties perform local computations on their shares and exchange messages according to a 

predefined protocol. 

3. Reconstruction: The result is reconstructed from the shares without revealing individual inputs. 

 

Example: Yao's Garbled Circuits protocol enables two-party secure computation by transforming the function into a 

garbled circuit, where parties evaluate the circuit without revealing their inputs. 

 

Differential Privacy 

Principle: Differential privacy provides a framework to ensure that the output of a computation does not significantly differ 

when any single input is changed, thereby protecting individual data points. 

 

Mathematical Foundation: 

1. Differential Privacy Definition: A mechanism MMM is ϵ\epsilonϵ-differentially private if for any two datasets 

DDD and D′D'D′ differing in a single element, and for any output SSS:  

Pr⁡[M(D)∈S]≤eϵ⋅Pr⁡[M(D′)∈S]\Pr[M(D) \in S] \leq e^\epsilon \cdot \Pr[M(D') \in 

S]Pr[M(D)∈S]≤eϵ⋅Pr[M(D′)∈S] 

2. Noise Addition: Achieved by adding random noise calibrated to the sensitivity of the function being computed. 

 

Example: The Laplace mechanism adds noise from a Laplace distribution to the output of a function to achieve differential 

privacy. 

 

Federated Learning 

 

Principle: Federated learning enables multiple parties to collaboratively train a machine learning model without sharing 

their raw data, maintaining data privacy. 

 

Mathematical Foundation: 

 

1. Local Training: Each party trains a local model on their own dataset. 

2. Model Aggregation: Local model updates are sent to a central server, which aggregates them (e.g., by averaging) 

to update the global model. 

3. Communication Protocol: Ensures secure exchange of model updates and protects against information leakage. 
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Example: Federated Averaging (FedAvg) algorithm involves local computation of model updates followed by secure 

aggregation to refine the global model. 

 

Comparative Analysis of Techniques 

Each privacy-preserving technique offers unique strengths and addresses specific aspects of privacy and security: 

 

1. Homomorphic Encryption: Provides strong security by allowing encrypted computations but is computationally 

intensive. 

2. SMPC: Ensures data privacy through collaborative computation, suitable for scenarios involving multiple parties 

with sensitive data. 

3. Differential Privacy: Balances privacy with data utility by introducing controlled noise, widely applicable in data 

analysis and machine learning. 

4. Federated Learning: Maintains data locality, reducing privacy risks and communication overhead, ideal for 

distributed environments. 

 

Integration and Hybrid Approaches 

To overcome the limitations of individual techniques, hybrid approaches that combine multiple methods are being 

explored. For example, integrating differential privacy with federated learning can enhance privacy guarantees while 

maintaining model performance. 

 

RECENT METHODS 

 

Advanced Homomorphic Encryption Techniques 

 

1. Bootstrapping Optimization: 

o Recent efforts have focused on optimizing the bootstrapping process in fully homomorphic encryption 

(FHE) to reduce its computational overhead. Techniques such as those proposed by Chillotti et al. (2020) 

in the TFHE library introduce efficient bootstrapping algorithms that significantly improve performance, 

making FHE more practical for real-world applications. 

2. Hybrid Homomorphic Encryption: 

o Combining FHE with other cryptographic methods, such as somewhat homomorphic encryption (SHE) 

and multi-key FHE, has led to more flexible and efficient schemes. For example, Brakerski et al. (2020) 

introduced a hybrid approach that leverages the strengths of both FHE and SHE to enhance computational 

efficiency while maintaining strong security guarantees. 

 

Enhanced Secure Multi-Party Computation (SMPC) Protocols 

 

1. Threshold Cryptography: 

o Recent advances in threshold cryptography have improved the resilience and security of SMPC protocols. 

Threshold encryption schemes allow a predefined subset of participants to collaboratively perform 

decryption or signature operations, enhancing security in multi-party settings. 

2. Optimized Communication Protocols: 

o New SMPC protocols have focused on reducing communication complexity and improving scalability. 

Protocols such as SPDZ-2K (Damgård et al., 2019) introduce efficient communication strategies that 

minimize the data exchanged between parties, making SMPC more practical for large-scale applications. 

 

Differential Privacy Innovations 

1. Adaptive Differential Privacy: 

o Adaptive differential privacy techniques dynamically adjust the amount of noise added to data based on 
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the sensitivity of the queries being processed. This approach, exemplified by recent work from Thakurta 

et al. (2021), optimizes the trade-off between privacy and accuracy, enhancing the applicability of 

differential privacy in machine learning. 

2. Federated Differential Privacy: 

o Integrating differential privacy with federated learning has led to methods that ensure privacy at both the 

local and global levels. McMahan et al. (2018) introduced algorithms that add noise during the federated 

learning process, ensuring that individual updates remain private while maintaining overall model 

accuracy. 

 

Advances in Federated Learning 

 

1. Personalized Federated Learning: 

o Personalized federated learning techniques address the challenge of heterogeneous data across different 

clients. By adapting global models to local data distributions, methods like those proposed by Smith et al. 

(2020) improve model performance and personalization while preserving privacy. 

2. Secure Aggregation Protocols: 

o Secure aggregation protocols, such as Bonawitz et al. (2017), ensure that model updates from individual 

clients are aggregated securely without revealing any individual updates. These protocols use 

cryptographic techniques to provide robust privacy guarantees in federated learning settings. 

 

Emerging Hybrid Approaches 

 

1. Federated Learning with Homomorphic Encryption: 

o Combining federated learning with homomorphic encryption enables secure computation on encrypted 

model updates. Recent studies, such as Phong et al. (2018), demonstrate how this hybrid approach can 

enhance privacy in federated learning environments by ensuring that model updates remain encrypted 

throughout the aggregation process. 

2. Differentially Private SMPC: 

o Integrating differential privacy into SMPC protocols offers enhanced privacy guarantees for collaborative 

computations. By adding noise to the data or the computation process, methods like those proposed by 

Gaboardi et al. (2020) ensure that the outputs of SMPC protocols remain differentially private. 

 

Future Directions 

The field of privacy-preserving AI continues to advance, with several promising directions for future research: 

 

1. Improving Efficiency: Ongoing research aims to further reduce the computational and communication overhead 

of privacy-preserving techniques, making them more practical for large-scale AI applications. 

2. Combining Techniques: Exploring new hybrid approaches that combine multiple privacy-preserving methods 

can leverage their complementary strengths, enhancing both privacy and performance. 

3. Ethical and Regulatory Considerations: Addressing the ethical and regulatory implications of privacy-

preserving AI, including fairness, transparency, and compliance with privacy laws, remains a critical area of focus. 

 

SIGNIFICANCE OF THE TOPIC 

 

Protecting Sensitive Data 

1. Personal Privacy: 

o In an era where data breaches and unauthorized access to personal information are increasingly common, 

protecting individual privacy is critical. Privacy-preserving AI techniques help ensure that personal data 

used in AI models remains confidential, mitigating the risks of exposure and misuse. 
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2. Confidential Business Information: 

o For businesses, maintaining the confidentiality of proprietary information, such as trade secrets, customer 

data, and strategic plans, is vital. Encrypted AI techniques enable companies to leverage AI for 

competitive advantage without compromising their sensitive data. 

 

Compliance with Regulations 

 

1. Data Protection Laws: 

o Regulations such as the General Data Protection Regulation (GDPR) in Europe and the California 

Consumer Privacy Act (CCPA) in the United States impose stringent requirements on data privacy. 

Privacy-preserving AI techniques are essential for ensuring compliance with these laws, avoiding legal 

penalties, and maintaining consumer trust. 

2. Ethical AI Practices: 

o Ethical considerations in AI, including fairness, transparency, and accountability, are closely linked to 

privacy. Implementing privacy-preserving methods aligns with ethical AI practices, promoting trust and 

acceptance of AI technologies. 

 

Enhancing AI Adoption and Trust 

 

1. Building Trust: 

o Trust is a critical factor in the adoption of AI technologies. By demonstrating robust privacy protections, 

organizations can build trust with consumers, stakeholders, and regulatory bodies, facilitating wider 

acceptance and use of AI. 

2. Encouraging Collaboration: 

o Privacy-preserving AI techniques, such as federated learning and secure multi-party computation, enable 

collaborative data analysis and model training across organizations without the need to share raw data. 

This promotes collaboration while safeguarding data privacy. 

 

Addressing Security Concerns 

 

1. Mitigating Data Breaches: 

o Encrypted techniques reduce the risk of data breaches by ensuring that even if data is intercepted, it 

remains unintelligible without the decryption keys. This adds an additional layer of security to AI 

systems. 

2. Protecting Against Adversarial Attacks: 

o Privacy-preserving methods can enhance the resilience of AI models against adversarial attacks, where 

malicious actors attempt to manipulate or infer sensitive information from AI outputs. 

 

Enabling Innovation and Research 

 

1. Facilitating Research: 

o Privacy-preserving AI enables researchers to access and analyze sensitive datasets that would otherwise 

be inaccessible due to privacy concerns. This fosters innovation and advances in various fields, such as 

healthcare, finance, and social sciences. 

2. Developing New Applications: 

o With robust privacy protections in place, AI can be applied to new areas where data sensitivity has 

previously been a barrier. For example, healthcare applications can benefit from privacy-preserving 

techniques to analyze patient data without compromising confidentiality. 
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Societal Impact 

 

1. Empowering Individuals: 

o Privacy-preserving AI empowers individuals by giving them control over their personal data and ensuring 

that their privacy is respected. This is particularly important in contexts such as personalized medicine 

and consumer analytics. 

2. Promoting Social Good: 

o AI applications for social good, such as public health monitoring and environmental conservation, often 

involve sensitive data. Privacy-preserving techniques ensure that these initiatives can be pursued without 

infringing on individual privacy. 

 

Future-Proofing AI Development 

 

1. Adapting to Evolving Threats: 

o As cyber threats and privacy concerns evolve, developing and implementing advanced privacy-preserving 

techniques is crucial for staying ahead of potential risks. This future-proofs AI systems, ensuring their 

longevity and reliability. 

2. Driving Policy and Standards: 

o The development of privacy-preserving AI techniques can influence policy and standard-setting in the AI 

and data privacy domains. By setting high standards for privacy protection, the field can shape the 

regulatory landscape and promote best practices. 

 

LIMITATIONS & DRAWBACKS 

 

Homomorphic Encryption 

 

1. Computational Overhead: 

o Homomorphic encryption, particularly fully homomorphic encryption (FHE), is computationally 

intensive. The process of performing operations on encrypted data is significantly slower compared to 

operations on plaintext data. This high computational overhead limits its practicality for large-scale and 

real-time applications. 

2. Storage Requirements: 

o Encrypted data often requires more storage space than plaintext data due to the expansion that occurs 

during encryption. This increased storage requirement can be a constraint, especially for applications 

involving large datasets. 

3. Complexity of Implementation: 

o Implementing homomorphic encryption schemes is complex and requires specialized knowledge in 

cryptography. This complexity can be a barrier for practitioners who may not have the necessary 

expertise, limiting the adoption of these techniques. 

 

Secure Multi-Party Computation (SMPC) 

 

1. Communication Overhead: 

o SMPC protocols involve significant communication between parties to perform secure computations. The 

need for frequent message exchanges can lead to high communication overhead, which can be a 

bottleneck in distributed and network-constrained environments. 

2. Scalability Issues: 

o As the number of participating parties increases, the complexity and overhead of SMPC protocols also 

increase. This scalability challenge makes it difficult to apply SMPC to scenarios involving a large 
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number of parties or massive datasets. 

3. Limited Practical Implementations: 

o While SMPC has strong theoretical foundations, practical implementations often face challenges related 

to efficiency and usability. Bridging the gap between theory and practice remains a key challenge for 

SMPC adoption. 

 

Differential Privacy 

 

1. Trade-off Between Privacy and Accuracy: 

o Differential privacy introduces noise to data or computations to ensure privacy. This noise can degrade 

the accuracy and utility of the resulting data or models. Balancing the trade-off between privacy 

protection and maintaining data accuracy is a significant challenge. 

2. Parameter Selection: 

o The effectiveness of differential privacy depends on carefully selecting privacy parameters (e.g., the 

privacy budget ϵ\epsilonϵ). Choosing appropriate parameters requires expertise and can be context-

dependent, complicating its implementation. 

3. Limited Application to Complex Models: 

o Applying differential privacy to complex machine learning models, such as deep neural networks, can be 

challenging. The introduction of noise can significantly impact model performance, making it difficult to 

achieve high accuracy while maintaining privacy. 

 

Federated Learning 

 

1. Heterogeneity of Data: 

o In federated learning, data is distributed across multiple clients, often leading to heterogeneity in data 

distributions. This heterogeneity can complicate model training and result in performance degradation 

compared to centralized training. 

2. Communication Overhead: 

o Federated learning involves frequent communication between clients and a central server to exchange 

model updates. This communication overhead can be a limiting factor, especially in bandwidth-

constrained or latency-sensitive environments. 

3. Security Vulnerabilities: 

o While federated learning aims to preserve data privacy, it is not immune to security threats. For example, 

malicious clients can perform adversarial attacks or poison model updates to compromise the overall 

system. Ensuring robust security in federated learning remains an ongoing challenge. 

 

General Limitations and Drawbacks 

 

1. Resource Intensiveness: 

o Privacy-preserving techniques often require substantial computational and memory resources. This 

resource intensiveness can limit their applicability in resource-constrained environments, such as mobile 

devices and IoT systems. 

2. Interdisciplinary Expertise: 

o Implementing privacy-preserving AI techniques often requires interdisciplinary expertise in areas such as 

cryptography, machine learning, and data privacy. The lack of readily available expertise can hinder the 

adoption and implementation of these techniques. 

3. Regulatory and Compliance Challenges: 

o Navigating the regulatory landscape and ensuring compliance with diverse data protection laws can be 

complex. Privacy-preserving techniques must be tailored to meet specific legal requirements, adding 
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another layer of complexity to their implementation. 

4. User Acceptance and Trust: 

o Ensuring user acceptance and trust in privacy-preserving AI systems is crucial. Users need to be 

confident that their data is being protected effectively. Lack of transparency and understanding of these 

techniques can lead to mistrust and resistance to adoption. 

 

CONCLUSION 

 

1. Diverse Techniques: 

o The survey has explored a range of privacy-preserving techniques, including homomorphic encryption, 

secure multi-party computation (SMPC), differential privacy, and federated learning. Each technique 

offers unique advantages and addresses different aspects of data privacy and security. 

2. Recent Innovations: 

o Recent advancements in these techniques have focused on improving efficiency, scalability, and 

practicality. Innovations such as optimized bootstrapping in homomorphic encryption, threshold 

cryptography in SMPC, adaptive differential privacy, and secure aggregation protocols in federated 

learning have significantly enhanced the feasibility of privacy-preserving AI. 

3. Challenges and Limitations: 

o Despite the progress, several challenges and limitations remain. High computational and communication 

overheads, complexity of implementation, trade-offs between privacy and accuracy, and security 

vulnerabilities are key issues that need to be addressed. These limitations highlight the need for continued 

research and development in the field. 

4. Significance and Impact: 

o The significance of privacy-preserving AI extends beyond technical considerations. It plays a crucial role 

in protecting individual privacy, ensuring compliance with data protection regulations, building trust in 

AI systems, and fostering collaboration and innovation. The societal and ethical implications of these 

techniques further underscore their importance. 

 

Future Directions 

The future of privacy-preserving AI lies in overcoming existing challenges and pushing the boundaries of current 

methodologies. Key areas for future research and development include: 

 

1. Enhancing Efficiency: 

o Reducing the computational and communication overheads of privacy-preserving techniques to make 

them more practical for large-scale and real-time applications. 

2. Developing Hybrid Approaches: 

o Combining multiple privacy-preserving methods to leverage their complementary strengths and address 

their individual limitations, thereby creating more robust and versatile solutions. 

3. Improving Usability: 

o Simplifying the implementation and deployment of privacy-preserving techniques to make them 

accessible to a broader range of practitioners, including those without specialized expertise in 

cryptography or data privacy. 

4. Addressing Ethical and Regulatory Challenges: 

o Ensuring that privacy-preserving AI techniques align with ethical standards and comply with evolving 

data protection regulations, fostering transparency, fairness, and accountability in AI systems. 

5. Promoting Interdisciplinary Collaboration: 

o Encouraging collaboration between researchers, practitioners, policymakers, and other stakeholders to 

address the multifaceted challenges of privacy-preserving AI and to develop holistic solutions that 

balance privacy, security, and performance. 
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